

Ingenieurbüro für nachhaltige Energietechnik

PLANCON

Leistungsumfang

Leistungsbereich ENERGIETECHNIK

Alexander Gerdt

Geschäftsführer und Leiter Energiekonzepte Wirtschaftsingenieur M.Sc. RWTH

Mail: a.gerdt@plancon-energie.de Tel: 0651/9947 8188

Web: www.plancon-energietechnik.de

energie sprong

2. WÄRMEWENDESTRATEGIE

3.
DEKARBONISIERUNG INDUSTRIE & GEWERBE

4. ABWÄRMENUTZUNG DER INDUSTRIE

5.

WASSERSTOFF: ZUKÜNFTIGER ENERGIETRÄGER

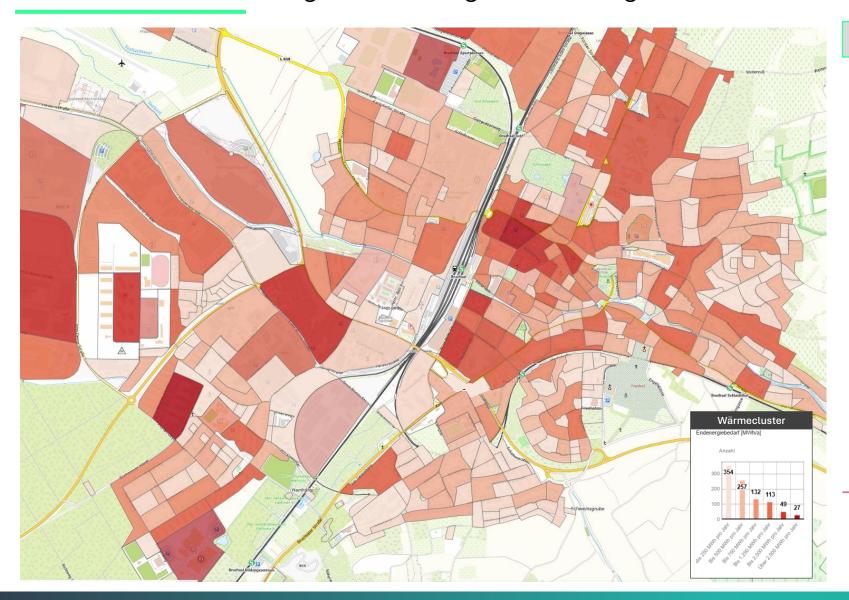
6.

DATENERFASSUNG FRAGEBOGEN

KOMMUNALE WÄRMEPLANUNG I Stadt Wittlich

Kommunale Wärmeplanung I Stadt Wittlich

PLANCON'


Prozessschritte und Fortführung 2045

Bestands- und Potentialanalyse im Rahmen der KWP

PLANCON'

Wärmebedarfsauswertung und zukünftige Entwicklung

Wärme- und Kältebedarfe

- → Detaillierte Datenaufnahme des Bestands auf der Gebäudeebenen mit eigener Gebäudematrix (Gebäudeauswertungs-Tool).
- → Datenerhebung energetischer Parameter
 - U-Werte (Außenwand, Dach, Fenster)
 - Nutzungsart
 - Anlagentechnik
 - Flächen/Volumen
- → Herleitung zukünftiger Bedarfe über Sensitivitätsanalyse (u.a. anhand Sanierungsquote/Einzelmaßnahmen an der Gebäudehülle).
- → Berücksichtigung von Quartierserschließungen und Nachverdichtung.
- → Datenerhebung ergänzt durch Vor-Ort-Begehungen und Geodaten!
- » Keine externen Daten für die Bedarfserhebung zwingend notwendig!

Bestands- und Potentialanalyse im Rahmen der KWP

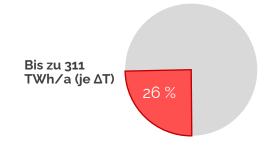
PLANCON'

Thermische Potential an erneuerbarer Wärme und Abwärme

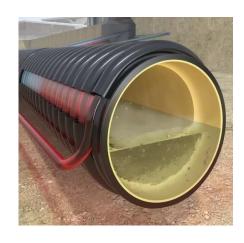
GEOTHERMIE

Randbedingungen:

- Wärmeentzug $45 \text{ kWh/m}^2/a$
- Jahresarbeitszahl 3

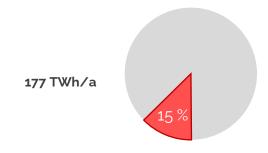

Wenn 5% der Fläche DE 100 % genutzt wird.

SEE- UND FLUSSTHERMIE



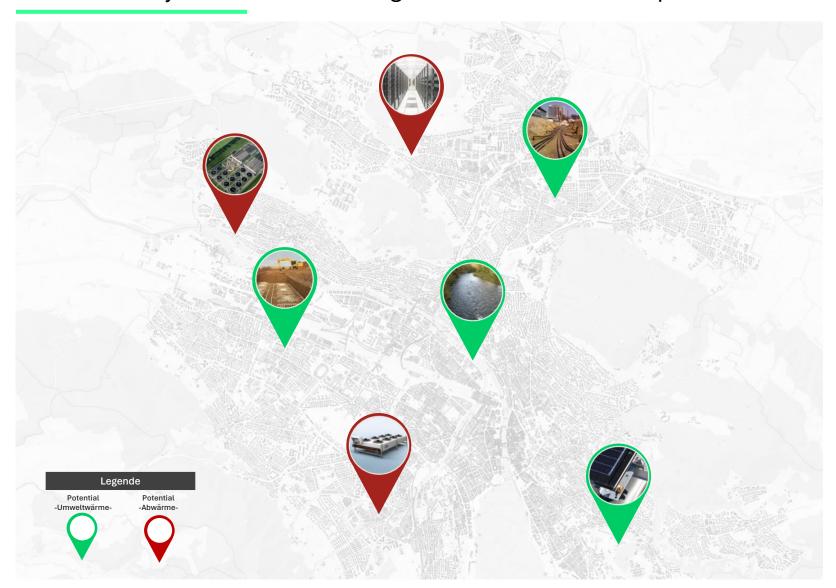
Randbedingungen:

- $500 l/m^2/a$ Niederschlag
- Nutzbarer Menge 25% von Niederschlag
- Jahresarbeitszahl 3



ABWASSER

Randbedingungen:


- 100 kWh/m²/a * 600 Tkm Rohrnetz
- Wärmeentzug 5K dezentral od. zentral
- Jahresarbeitszahl 3

Bestands- und Potentialanalyse im Rahmen der KWP

Potentialanalyse und Erschließung erneuerbarer Wärmequellen und Abwärme

Potentialerhebung

- → Ableitung energetischer Potentiale über 3D-Gebäudemodell und deren zeitliche Entwicklung.
- → Erhebung erneuerbarer Wärmepotentiale:
 - Erdwärme (vertikal, horizontal)
 - Solar (Solarthermie, PVT)
 - See- und Flusswasserthermie
 - Außenluft
- → Erhebung ungenutzter Abwärmequellen:
 - Klärwerke und Abwasser
 - Serverparks bzw. -anlagen
 - Rückkühlwerke Industrie, GHD

» Nutzung aller verfügbaren Wärme- und Abwärmequellen auf Basis der Klimaneutralität.

2. WÄRMEWENDESTRATEGIE

3.

DEKARBONISIERUNG INDUSTRIE & GEWERBE

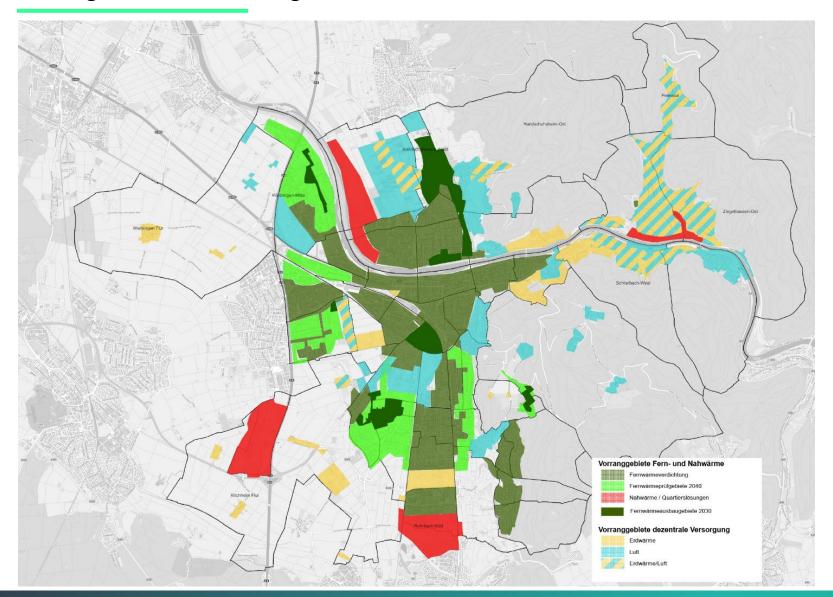
4. ABWÄRMENUTZUNG DER INDUSTRIE

5

WASSERSTOFF: ZUKÜNFTIGER ENERGIETRÄGER

6.

DATENERFASSUNG FRAGEBOGEN


KOMMUNALE WÄRMEPLANUNG I Stadt Wittlich

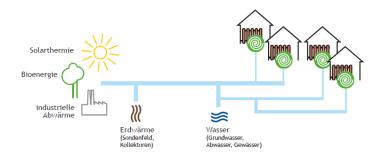
Entwicklung einer Wärmewendestrategie

PLANCON'

Strategische Entwicklung von erneuerbaren Wärmenetzen

Wärmewendestrategie

- → Bildung zellularer Wärmecluster mit Gegenüberstellung von Wärmebedarf und Potential.
- → Erstellung neuer Netzinfrastruktur und die Integration von Bestandsnetzen.
- → Ausweisung von Vorranggebiete für neue Wärmenetze und deren Ausbauziele für 2030, 2040 und 2045.
- → Bildung notwendiger Speicherkapazitäten für einzelne Wärmezellen und das Gesamtnetz (Kurzzeitspeicher bis hin zu saisonalen Speichersystemen).
- → Erstellung eines detaillierten Transformationsplans mit einer zeitliche Bauabfolge bzw. Bauabschnitten je Cluster.

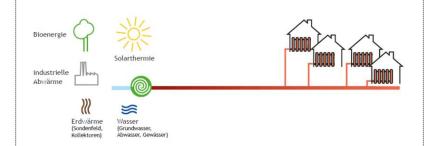

» Dezentrale Erschließung der Wärmecluster von "außen nach innen".

Entwicklung einer Wärmewendestrategie

PLANCON'

Unterscheidung der Netzsystematik

Kalte Nahwärme

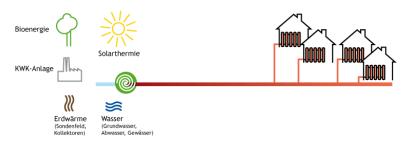

Vorteile

- » Systemtemperatur liegt lediglich bei 5-12°C, daher keine Wärmeverluste.
- » Verteilnetz kann zusätzlich als Erdkollektor genutzt werden.
- » Einbindung aus allen erneuerbaren Wärmequellen unbegrenzt möglich.
- » Möglichkeit der passiven Kühlung mit gleichzeitiger Regeneration der Wärmequelle im Sommer.
- » Low Tech: Zentrale Technik bestehend lediglich aus Pumpenanlage und Druckhaltung.

Nachteile

- » Begrenzter Wärmestrom durch geringes ΔT (meist nur zwischen 3-5 K), daher vorwiegend in Neubauquartieren möglich.
- » Hohe Investitionskosten durch große Anzahl von dezentraler Wärmepumpen mit 100%ig Leistungsvorhaltung notwendig.

Low-Ex-Wärmenetz


Vorteile

- » Systemtemperatur liegt je nach Anwendung zwischen 30-50°C, daher geringe Wärmeverluste.
- » Einbindung aus allen erneuerbaren Wärmequellen unbegrenzt möglich.
- » Gesamtsystem besteht nur aus einer zentralen Wärmepumpenanlage (WP-Kaskade).
- » Hohe Wärmeströme möglich, da ein ΔT von bis zu 30K möglich → Erschließung Bestandsquartiere!

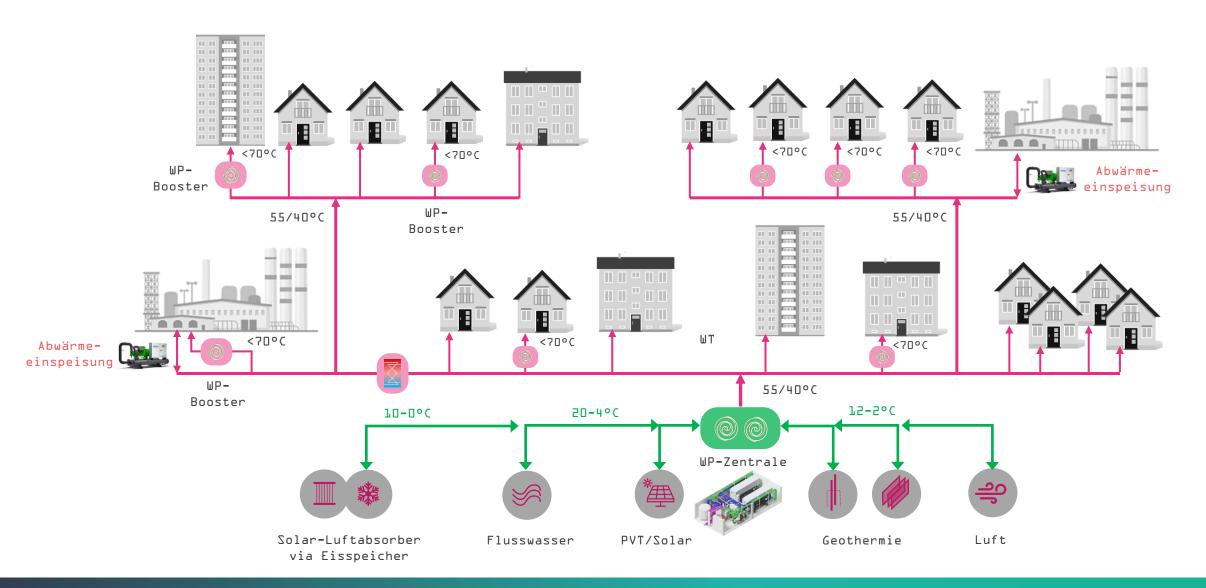
Nachteile

- » Hohe Investition für Netzstruktur, da klassische Fernwärmeleitung mit Wärmedämmung.
- » Ausfallrisiko zentrale Wärmepumpensystem → Redundanz in vielen Fällen notwendig.
- » Komplexe Netzsystematik: Netzbetriebsführung mit gesamter Peripherie und "neuer" Einbindung von EE.

Fernwärmenetz

Vorteile

- » Hohe Wärmeströme möglich, da ein ΔT von bis zu 6oK möglich → Erschließung großer Quartiere/Stadtteile!
- » Hohe Netzreserven für Ausbau meist vorhanden.
- » Einfacher Netzstruktur mit klassischer Betriebsführung.


Nachteile

- Einbindung erneuerbaren Wärmequellen nur begrenzt möglich → meist nur Biomasse und Solarthermie.
- » Hohe Betriebskosten durch Netzverluste (bis zu 20%).
- » Hohe Investition für Netzstruktur, da klassische Fernwärmeleitung mit Wärmedämmung.
- » Ausfallrisiko zentraler Wärmeerzeuger → Redundanz in vielen Fällen notwendig.
- » Einbindung Wärmepumpensystem nur über Hochtemperaturanlagen mit geringer Effizienz möglich.

Entwicklung einer Wärmewendestrategie

Erneuerbares Wärmenetz im Betrieb als LowEx-Wärmeverbundnetz

2. WÄRMEWENDESTRATEGIE

3. **DEKARBONISIERUNG INDUSTRIE & GEWERBE**

4. ABWÄRMENUTZUNG DER INDUSTRIE

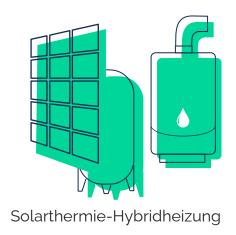
5.

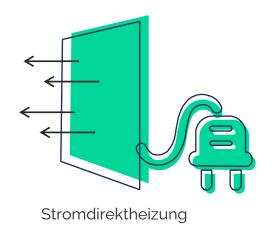
WASSERSTOFF: ZUKÜNFTIGER ENERGIETRÄGER

6.

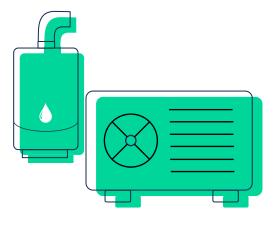
DATENERFASSUNG FRAGEBOGEN

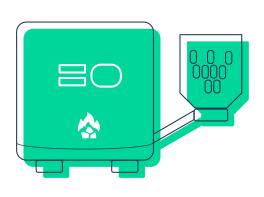
KOMMUNALE WÄRMEPLANUNG I Stadt Wittlich

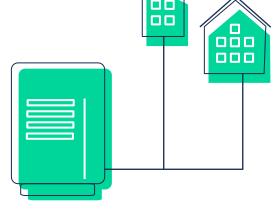




Erfüllungsoptionen des Gebäudeenergiegesetzes (kurz GEG) ab 2024


Einhaltung der 65% EE-Regel nach GEG:





Biomasseheizung

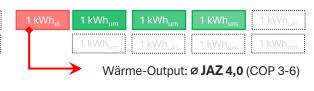
Wärmenetze

Hybridheizung (EE/fossil)

PLANCON

Erfüllungsoptionen WÄRMEPUMPE

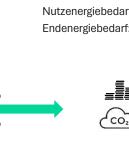
Unterscheidung der wesentlichen Bautypen:



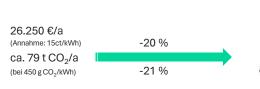
Quelltemperatur zwischen +5°C bis +60°C

(Heizwertkessel/ 20a Bestand):

Wärmebedarf: 1.000.000 kWh (100.000 m3 Erdgas)


70 % (20a Bestand) Wirkungsgrad: 700.000 kWh_{th} Nutzenergiebedarf:

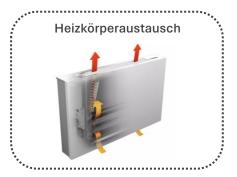
CO2


50.000 €/a ca. 215 t CO₂/a (bei 215 g CO₂/kWh)

Wärme-Output: Ø JAZ 3,0 (COP 2-4)

S/W-Wärmepumpe Nutzenergiebedarf: 700.000 kWh_{th} Endenergiebedarf: 175.000 kWh

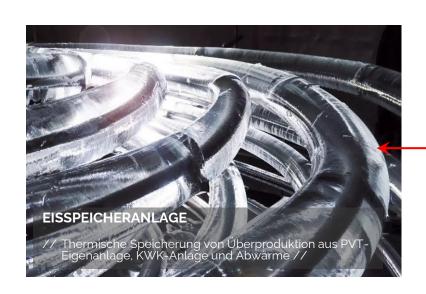
Nutzenergiebedarf: 700.000 kWh_{th} Endenergiebedarf: 140.000 kWh

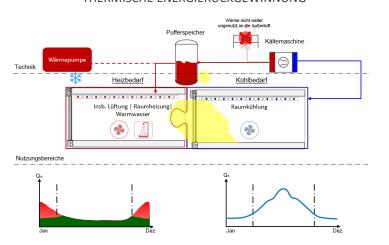

L/W-Wärmepumpe

21.000 €/a (Annahme: 5ct/kWh) ca. 63 t CO₂/a CO2 (bei 450 g CO₂/kWh)

PLANCON'

Effizienzmaßnahmen zur Wärmebedarfsoptimierung

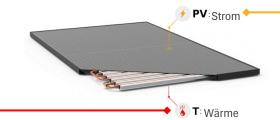




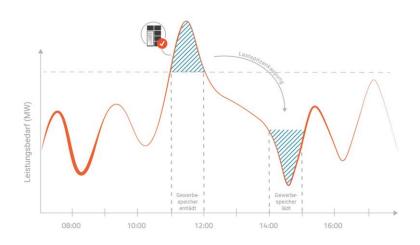
PLAN'CON'

Wärme- & Stromerzeugung und deren dezentrale Speicherung

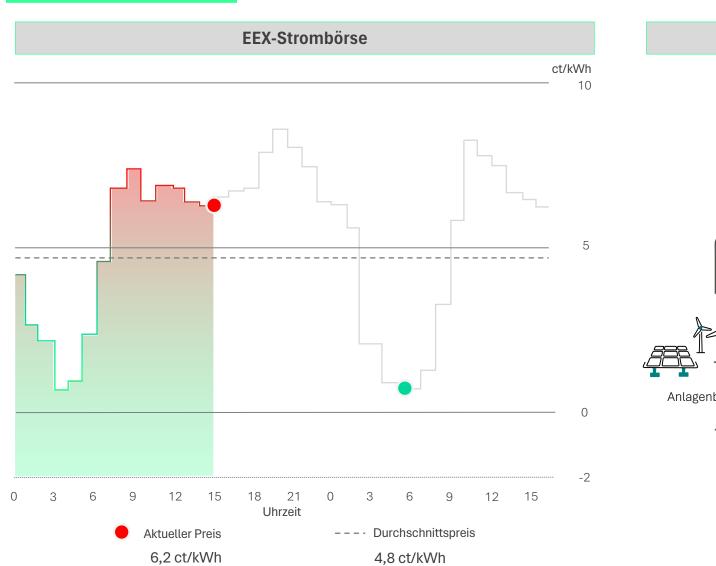
THERMISCHE ENERGIERÜCKGEWINNUNG



Dezentrale Stromerzeugung



PVT-Modul: Wärme- und Stromerzeugung



PEAK SHAVING / SPITZENLASTKAPPUNG

Erneuerbare Strombeschaffung durch Day-Ahead-Markt und PPA-Verträge

Energielieferung Inkl. Herkunftsnachweis Anlagenbetreibende Energieversorger/ Power-Purchase-Agreement Direktvermarkter Individueller Preis

Grünstrombeschaffung via PPA (Power-Purchase-Agreement)

2. WÄRMEWENDESTRATEGIE

3.

DEKARBONISIERUNG INDUSTRIE & GEWERBE

4. ABWÄRMENUTZUNG DER INDUSTRIE

5

WASSERSTOFF: ZUKÜNFTIGER ENERGIETRÄGER

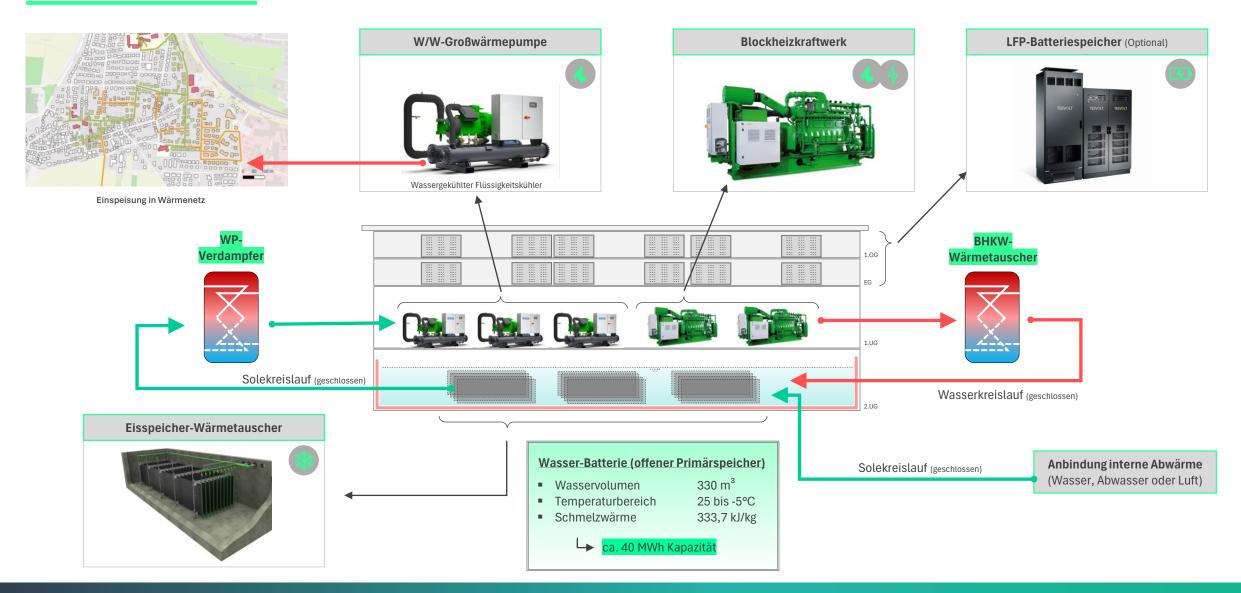
6.

DATENERFASSUNG FRAGEBOGEN

KOMMUNALE WÄRMEPLANUNG I Stadt Wittlich

Abwärmenutzung in der Industrie

PLAN'CON'


Abwärmetemperatur (Exergiegehalt) und Aufkommen

Abwärmenutzung in der Industrie

Best Practice: Kraft-Wärmekopplung , Wärmepumpeneinsatz & Batteriepark in der Industrie

2. WÄRMEWENDESTRATEGIE

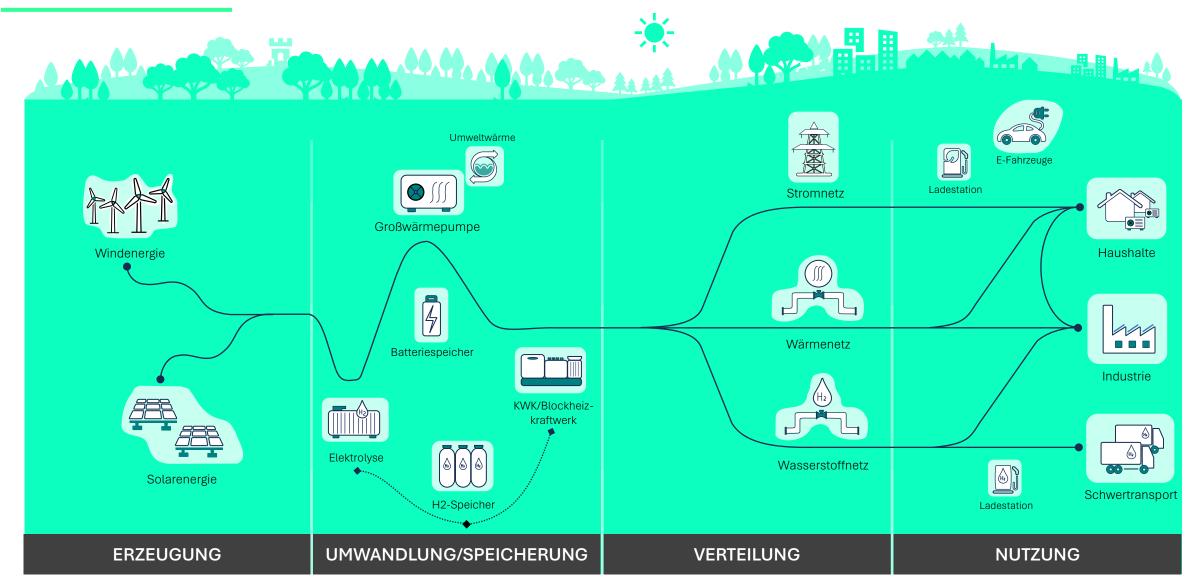
DEKARBONISIERUNG INDUSTRIE & GEWERBE

4. ABWÄRMENUTZUNG DER INDUSTRIE

WASSERSTOFF: ZUKÜNFTIGER ENERGIETRÄGER

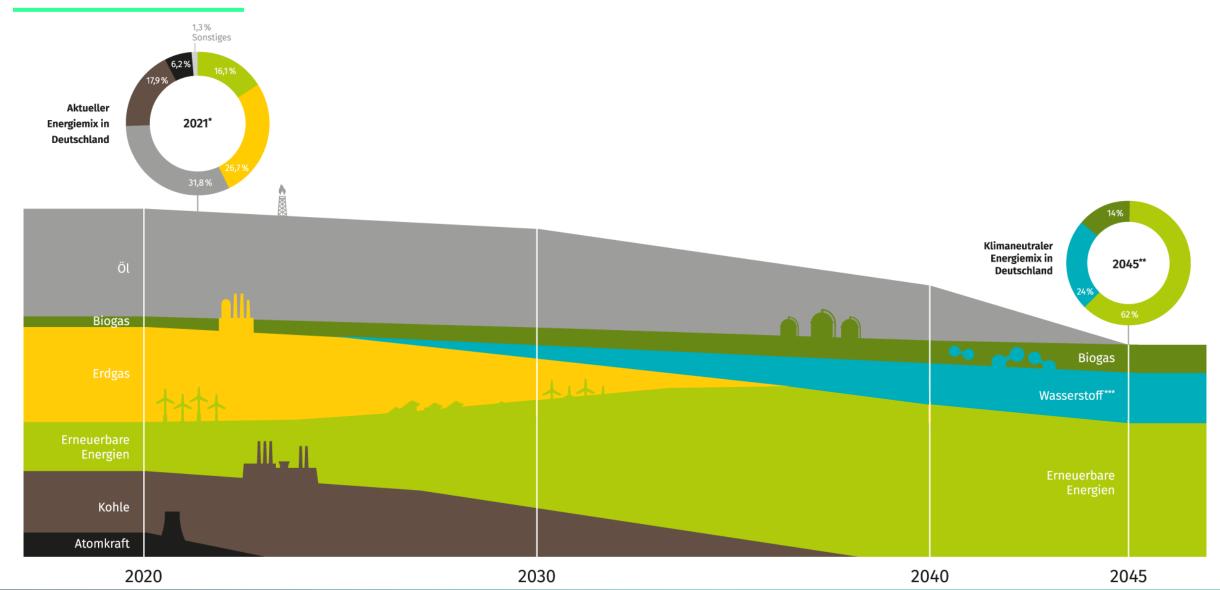
6.

DATENERFASSUNG FRAGEBOGEN


KOMMUNALE WÄRMEPLANUNG I Stadt Wittlich

Kommunale Wärmeplanung I Stadt Wittlich

PLANCON'


Ganzheitliche Dekarbonisierung 2045

Kommunale Wärmeplanung I Stadt Wittlich

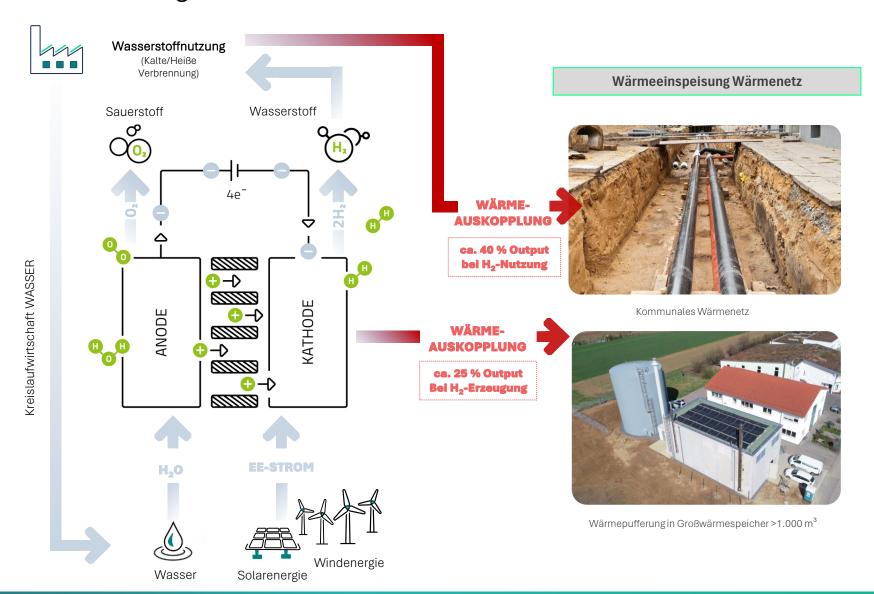
PLANCON'

Ganzheitliche Dekarbonisierung 2045

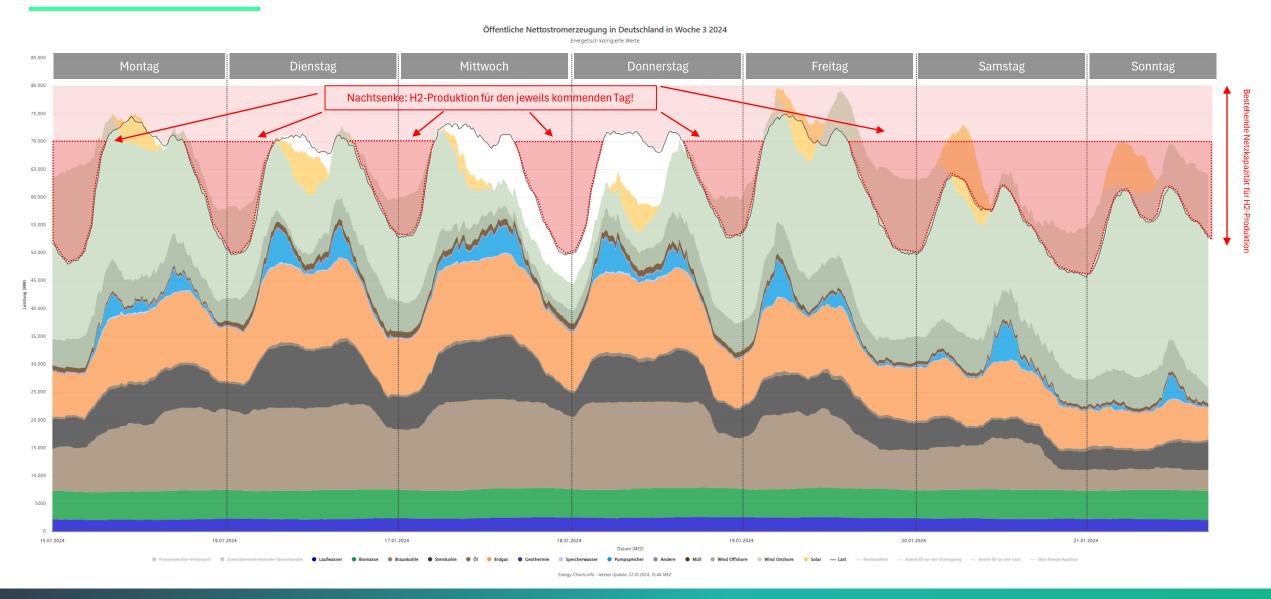
Wasserstoff: Nutzung als zukünftiger Energieträger

PLANCON'

Dezentrale Wasserstoffproduktion und Nutzung


Elektrolyseur-Anlagen

Stationäre Großanlage (dezentral/zentral)


Mobile Anlagen zur dezentralen H₂-Erzeugung

Wasserstoff: Nutzung als zukünftiger Energieträger

Netzkapazität und HEUTIGE Produktionsmöglichkeit

Wasserstoff: Nutzung als zukünftiger Energieträger

PLANCON'

Best Practice: Dezentrale Wasserstofferzeugung

2. WÄRMEWENDESTRATEGIE

DEKARBONISIERUNG INDUSTRIE & GEWERBE

4. ABWÄRMENUTZUNG DER INDUSTRIE

5

WASSERSTOFF: ZUKÜNFTIGER ENERGIETRÄGER

6.
DATENERFASSUNG FRAGEBOGEN

KOMMUNALE WÄRMEPLANUNG I Stadt Wittlich

Datenerfassung per Fragebogen

Aufnahme des Heizungssystems und mögliche Abwärmequellen

Informationen über Ihre Wärmeversorgung							Über welches Raumübergabesystem erfolgt die Beheizung:	☐ Heizkörper ☐ Lufterhitzer (Wand-/Deckengeräte)		3. Anschlussbereitschaft "kommunales Wärmenetz"		(3)
Heizungssystem Wärmebedarf und Anlage								☐ Deckenstrahlplatten (wassergeführt) ☐ Bodenheizung (u.a. Thermofundament) ☐ Wandheizung (wassergeführt)		3.1 Wärmeabnahme Besteht grundlegendes Interesse an einem Anschluss:	□JA	□ NEIN
Jahresverbrauch 2020 Jahresverbrauch 2021 Jahresverbrauch 2022 Baujahr Heizungsanlage Hersteller / Typ	Erdgas	Öl [Liter]	Strom [kWh]	Holzhack- schnitzel [srm]	Scheitholz [Ster]	Pellets [kg]	Welche Vorlauftemperatur wird derzeit benötigt: Wird eine Lüftungsanlagen (RLT) zur Beheizung verwendet: 2. Erneuerbare Energien 2.1 Erneuerbare Wärmeerzeugung Nutzen Sie bereits erneuerbare Wärmesysteme:	☐ Dunkelstrah ☐ JA ☐ JA	ler (Gas/Infrarot)fin °C]NEIN	Wenn Ja, zu welchem Zeitpunkt: 3.2 Einspeisung von Abwärme Besteht das Interesse an der Abgabe von Abwärme: Wenn Ja, zu welchem Zeitpunkt: 4. Sonstige Bemerkungen/Anregungen	□ JA	□ NEIN
1.2 Prozesswärme und Abwärmenutzung Wird durch den Wärmeerzeuger auch Prozesswärme bereitgestellt: Welches Temperaturniveau wird hierfür bereitgestellt: Anteil der Prozesswärme am Gesamtverbrauch:				☐ JA ☐ NEIN[in °C][in %]			Wenn Ja, welches System: Welche Wärmeenergie (Nutzwärme) wird hierdurch bereitgestellt:	☐ Solarthermi ☐ BHKW via B ☐ Geothermie ☐ Großwärme	iogas			
Wie erfolgt die Abführung der Abwärme: Falls Rückkühlung, welche Art der Kühlung kommt zum Einsatz: Falls vorhanden, Jahresstrombedarf der Rückkühlung: Welches Temperaturniveau enthält die Abwärme:				□ Schornstein			2.2 Erneuerbare Stromerzeugung Nutzen Sie bereits erneuerbare Stromerzeugung: Wenn Ja, welches System:	☐ JA ☐ Photovoltaik ☐ BHKW via B ☐ PPA-Wind/S	iogas Olar (Power Purchase Agreement)	Vielen Dank für Ihre Mitarbeit!		
Kommt eine Wärmerückgewinnung bereits zum Einsatz:				□JA	1	NEIN	Welche Strommengen werden hierdurch zur Verfügung gestellt: Wie hoch ist der Anteil am Gesamtstromverbrauch:		[in kWh/a] [in %]			
1.3 Gebäudebeheizung Welche Raumflächen werden beheizt:			☐ Büroflär ☐ Lagerflär ☐ Produkt	ächen		2.3 Geplante Maßnahmen Sind EE-Maßnahmen bereits geplant, und wenn ja welche:						
PLANCON Beralende Ingenieure Parlig möß I Kommunale Wärmeptenung I Dalenerhebung Wärmebedarf						Seite 2 von 4	PLANCON Beralende Ingenieure Parlis mbB I Kommunale Wärmeplanung I Dalenerhebung Wärmebedarf		Seite 3 von 4	PLANCON Beralende Ingenieure Parlis mbB I Kommunale Wärmeplanung I Dalenerhebung Wärmebedarf		Sette 4

PLANCON

// decarbonize your heat- and cooling solutions

Vielen Dank für Ihre Aufmerksamkeit!

Alexander Gerdt

E-MAIL

a.gerdt@plancon-energietechnik.de

TELEFON

0651 / 9947 8188

WÄRMEWENDE zukunftssicher planen!

Schrittweise Dekarbonisierung der Wärmeversorgung

energie sprong

